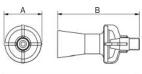
Eductor nozzle for mixing


- Recommended working pressure:0.5 kgf/cm2
- Flowrate tolerance: \pm 10% @ 0.5 \pm 0.1 kgf/cm2

Features

- Used for liquid stirring under the liquid surface. Specially
 designed nozzle that creates a stirring and circulating effect.
 This nozzle can mix chemicals, direct the suspended
 substances to a filter and prevent precipitation.
- Energy-efficiency of liquid stirring: the eductor nozzles are designed to suck and spray liquid through the amplified nozzle tube to increase liquid flow rate up to 4 times which provides more efficient stirring than aeration or robot arms
- (Quantity supplied+Intake=Total Flow).
- Single piece structure and hand installable without any tools.

A pplic ations

- Cleaning: scrubber, off-gas treatment, etc.
- Cooling: cooling tower, etc.
- Dispersion: firefighting.

Ma	1aterial	Serise	Unit	(mm)	Thread	Weight (g)		
Irla	iteriat	Selise	А	В	Туре	S316	FRPP	
М	letal	3/8ED	54	116	3/8M	274	-	
DI	lastic	3/8ED	54	116	3/8M	-	34	
Pla		3/4ED	74	159	3/4M	-	84.6	

Appearance dimensions may vary depending on model, material. Please ask for details.

Material

- Strengthened Fiberglass PP(FRPP)
- Stainless 316 (Only 3/8")

How to p	oleace a	ın order t	or LORF				
Example:	3/8	BSPT	ED	152	_	FRPP	
	1	1	1	1	1	1	
	Thread Size	Thread Type	Capacity Code	Capacity Code	Spray Angle	Material	Standard Pressure: Column in red

Thread Size	Capacity Code	Magnification	Quantity of flow	Capacity at Pressure									
				0.1 kgf/cm ²	0.25 kgf/cm ²	0.5 kgf/cm ²	0.75 kgf/cm ²	1 kgf/cm²	1.5 kgf/cm ²	2 kgf/cm²	3 kgf/cm²	4 kgf/cm²	
3/8	63	5.0	Supplied	5.59	8.84	12.50	15.31	17.68	21.65	25.00	30.62	35.36	
			Intake	22.36	35.36	50.01	61.25	70.72	86.61	100.01	122.49	141.44	
			Total	27.95	44.20	62.51	76.56	88.40	108.27	125.02	153.11	176.80	
	152		Supplied	10.87	17.18	24.30	29.76	34.36	42.08	48.59	59.51	68.72	
			Intake	43.46	68.72	97.18	119.03	137.44	168.33	194.37	238.05	274.88	
			Total	54.33	85.90	121.48	148.78	171.80	210.41	242.96	297.57	343.60	
3/4	-	5.0	Supplied	19.57	30.94	43.75	53.58	61.87	75.77	87.50	107.16	123.74	
			Intake	78.26	123.74	174.99	214.32	247.48	303.10	349.99	428.65	494.96	
			Total	97.83	154.68	218.74	267.90	309.35	378.87	437.49	535.81	618.70	
3/8	138	5.0	Supplied	12.29	19.44	27.5	33.6	38.89	47.63	54.9	67.36	77.78	
			Intake	49.16	77.16	110	134.4	155.56	190.52	219.6	269.44	311.12	
			Total	61.45	97.2	137.5	168	194.45	238.15	274.5	336.8	388.9	

^{*} For MPa / bar / psi units, please refer to https://www.lorric.com/.